Converting Computer PSUs

for amateur use

by

Pat McGuinness G4FDN

Computer P S U S

Synopsis

- How and why I became interested
- A brief introduction & history of SMPS
- Safety precautions
- Identifying the different types of PSU
- Testing computer PSU's
- Overview of PSU architecture
- Identifying key components
- Stopping interference & noise
- Getting different voltages
- Common component failures

Disclaimers & Acknowledgements

- No originality claimed
- Most of the "pioneering" work on converting computer PSU's for amateur radio use done by Udo Theinert DL2YEO
- Earliest article in RadComm in July 1992
- Also covered again by Ian White G3SEK Nov & Dec 2004

How and why I became interested?

- Being given a really heavy (> 40lbs)
 PSU for 4m linear using a 4CX150 valve
- Started thinking about possible alternatives more suitable for use in a shared domestic environment
- Started experimenting with computer PSU's to see what they could be made to do

SMPS versus linear PS

- Advantages
- Lower cost
- Lower weight
- Smaller size
- Higher efficiency

Disadvantages

- More complex
- Not straightforward to fault find
- More RF noise unless precautions taken

A brief history of SMPS

- 1952 first transistor "ringing choke"
 PSU
- By late 1950's self oscillating, push-pull, & drive push pull SMPS had been developed with feedback & regulation
- 1960's intro of PWM control
- 1970's SMPS in consumer products, TV's, VCR's
- Late 70's first home computers with SMPS

DANGER OF DEATH

Safety Precautions

- Danger of FATAL electric shock - 240V AC, 340V DC
- Danger present when power lead disconnected due to charge storage in electrolytic capacitors
- Only connect or move test leads with power disconnected
- Don't work on PSU's when tired or distracted

Identifying different types of PSU

- By motherboard connectors
- By case outline and label details

ATX & Later

PCXT PSU case outline

'Baby' AT PSU case outline

ATX PSU case outline

SFX-Micro ATX PSU case outline

Testing computer PSU's

- Connect a small load to +5V and +12V outputs
 0.5A to 2A, typically. Car stop or indicator bulbs are useful as they give visual response
- ATX and later PSU's need a switch or link on the motherboard connector to switch on

Computer PSU architecture

Basic circuit

Basic circuit operation

- After switch on, circuit operates momentarily as free running oscillator
- The PWM IC then takes over and syncs the oscillator.
- An error amp compares the voltage at 5V/12V output and adjusts the width of the pulse.
- Increased loading makes pulses wider, less loading pulses narrower.

More representative circuit part 1

More representative circuit part 2

Modified output circuit

Control circuitry

Inside the PSU

Identifying the components

Stopping Interference and noise

 Use a combined encapsulated IEC socket and filter instead of the usual unfiltered socket

A better PI filter on the DC out

 Common mode choking on mains in and dc out if necessary

Improving regulation and smoothing

 Doubling the value of the reservoir capacitors on the HV and LV sides approximately improves the regulation by a factor of 2 and ripple by even more.

- The PC tracks can have excessive volt drop bypass leads help
- Replace output leads with ones suitable for your application

Improving cooling & acoustic noise

- Replacement case transceiver speaker cases are ideal
- Meatier heatsinks for transistors
 & rectifiers can obviate need for fan

Modified computer PSU inside Transceiver speaker case

What voltages are easy to get?

- 24-28V
- 12-14V
- 6-6.6V
- 9-10V

What's involved in the mods?

- Swapping over rectifiers
- Disconnecting unwanted outputs
- Replacing feedback potential divider resistor to get wanted V
- Replacing full-wave centre tap rectifier configuration for bridge (e.g to get 6.3V from 3.3V part of circuit)

What if you want HV DC?

Solution?

- Rewind or replace the main transformer
- Replace the rectifiers with HV high speed recovery types e.g. BY289
- Replace output capacitors with HV ones
- Modify feedback potential divider

Rewind Transformer or Replace?

- Most transformers are doped or lacquered and it is necessary to 'dissolve this to get at the windings. Most have 'E' type cores
- Secondary windings may be separate or a single winding with taps.
- If you have a suitable LF ferrite toroid then this is a good replacement - easy to wind - single layer per winding.

Common Component Failures

- Fans failure causes overheating then secondary component failures
- Electrolytic capacitors
- Switching transistors
- On/off switches
- Rectifiers
- Surge limiter

Questions? Tea? The End?